Telegram Group & Telegram Channel
Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение



tg-me.com/ds_interview_lib/196
Create:
Last Update:

Чем LSTM отличается от традиционной RNN?

▫️Рекуррентные нейронные сети (recurrent networks, RNN) были придуманы для работы с последовательностями данных, такими как текст или временные ряды. Чтобы сеть могла хранить информацию о предыдущих токенах, было введено понятие внутренней памяти или скрытого состояния (hidden state). В простейшем случае оно выражается одним вектором фиксированной размерности. На каждом шаге в сеть подаются данные, при этом происходит обновление скрытого состояния. После этого по скрытому состоянию предсказывается выходной сигнал.
✍️ Традиционные RNN страдают от проблемы исчезающего градиента, когда в процессе обратного распространения ошибки градиенты становятся настолько малыми, что обучение становится очень неэффективным для длинных последовательностей.
▫️Сети с долговременной и кратковременной памятью (Long short term memory, LSTM) были созданы для решения вышеозначенной проблемы. Все рекуррентные сети можно представить в виде цепочки из повторяющихся блоков. В RNN таким блоком обычно является один линейный слой с гиперболическим тангенсом в качестве функции активации. В LSTM повторяющийся блок имеет более сложную структуру, состоящую не из одного, а из четырёх компонентов. Кроме скрытого состояния, в LSTM появляется понятие состояния блока (cell state). Hidden state же теперь передаётся наружу (не только в следующий блок, но и на следующий слой или выход всей сети). Также LSTM может добавлять или удалять определённую информацию из cell state с помощью специальных механизмов, которые называются gates.

Всё это позволяет LSTM более тонко контролировать поток информации, улучшая способность сети обучаться и стать более устойчивой к проблемам, связанным с градиентами.

#глубокое_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/196

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA